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Abstract. The theoretical absorption spectrum of a vibronic E⊗ε system exhibits two main
peaks of different height and width, and, at very strong Jahn–Teller energy, other peaks at
higher energies (cone resonances or Slonczewski resonances). Tetrameric cations of the group
V elements (P+4 , As+4 , Sb+4 ) can be pictured as strongly coupled E⊗ε Jahn–Teller systems;
however, high resolution photoelectron spectra available in the literature exhibit only two broad
spectral bands. To explain the disappearance of the cone resonances, we have considered a two-
mode vibronic model, that, besides a strong linear interaction with the modeε, also includes a
linear interaction with the total symmetric modeα1 (breathing mode); we have also considered
separately off-diagonal second-order effects on the E⊗ε Jahn–Teller system. The analysis has
been carried out in the framework of the recursion Lanczos technique, properly implemented.
We have verified that the Slonczewski resonances are quenched by the breathing mode, even in
the case of moderate coupling; we have then compared our E⊗(ε+α1) model with the available
experimental spectra of group V tetrameric clusters.

1. Introduction

The vibronic E⊗ε system, a double degenerate electronic state of symmetry E interacting
with a two-dimensional harmonic oscillator of symmetryε, is one of the most studied Jahn–
Teller systems [1–10]: besides its intrinsic interest, the E⊗ε system is the prototype of other
more complicated vibronic systems, and has thus become an enticing model on which to
test new theoretical treatments.

Among the various procedures, the iterative technique based on the Lanczos–Haydock–
Heine–Kelly recursion method [11, 12] has turned out to be particularly efficient, because
the coefficients of the recursion, for this vibronic system, have been obtained in analytic
form [13]. Then it is possible to study the system (from the point of view of the optical
properties) in the very strong vibronic coupling regime, giving theoretical evidence for the
cone resonances or Slonczewski resonances [14].

From the experimental point of view, the simplest systems, where the twofold degenerate
E electronic states exhibit a strong Jahn–Teller coupling with a two-dimensional modeε,
are the tetrameric cations of the group V elements (P+

4 , As+4 , Sb+4 ). The high resolution
photoelectron spectra [15] of the (1e)−1 band present two broad peaks and no cone
resonances. The main mechanism of vibronic interaction suggested in previous papers
[15, 16] to explain the (1e)−1 band shape of the experimental photoelectron spectra has
been a quadratic E⊗ε Jahn–Teller model [7]. The effect of the breathing mode, due to
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the diagonal form of the corresponding interacting Hamiltonian [17], has been taken into
account convoluting with a Poisson distribution the spectrum calculated in the quadratic
E⊗ε Jahn–Teller model [16]. However, what the leading mechanism is that washes out
cone resonances has not yet clearly emerged. In this paper we analyseseparatelythe effect
of the breathing mode (or equivalently the effect of a Poisson shape convolution) on the
strongly coupled E⊗ε model, taking advantage of the commuting properties [17] of the
matrices describing the linear coupling to the modeε andα1. After analysing the effect of
the off-diagonal second-order term, we show that the role of the total symmetric mode is
more important than usually believed. The calculations of the convolution with a Poisson
distribution function are made in the framework of the Lanczos technique (section 2),
appropriately implemented to avoid some usual numerical inaccuracies. In section 3 the
results obtained are compared with the (1e)−1 band of the tetrameric cations P+4 , As+4 and
Sb+4 and the effect of the off-diagonal second-order term is also shown. Section 4 contains
the conclusions.

2. Model and calculation procedure

High resolution experimental photoelectron spectra [15] of the tetrameric cations P+
4 , As+4

and Sb+4 exhibit, besides the (1e)−1 band with two broad peaks, a (2a)−1 single band
(according to the Franck–Condon picture) corresponding to the transition from the non-
degenerate ground state to the non-degenerate2A1 state. For the (2a)−1 single band, discrete
vibrational structure is well resolved in P+4 and As+4 cases, less well in the Sb+4 case; in
all tetramers, it is evident that theα1 mode is excited and that the discrete structure with
Poisson profile is a consequence of the coupling of the electrons with the nuclear totally
symmetric vibrations. So it becomes natural to assume for the (1e)−1 band a two-phonon
vibronic model where a double degenerate electronic state of symmetryE interacts both
with the two-dimensional mode (ε mode) and with the totally symmetric mode (α1 mode).

Let us indicate withφ1 and φ2 the degenerate electronic states of symmetryE for
the nuclei fixed in the symmetry position. We take the energy of the electron state as
the reference energy and we consider a linear coupling with the modesε and α1. The
electron–phonon coupling Hamiltonian has the following well known form:

He–p = kεh̄ωε
∣∣∣∣−q1 q2

q2 q1

∣∣∣∣+ kα1h̄ωα1

∣∣∣∣ q3 0
0 q3

∣∣∣∣ . (1)

In equation (1)q1, q2 and q3 are dimensionless normal coordinates related to the normal
symmetrized coordinatesQ1, Q2 (modeε) andQ3 (modeα1) in the formq = Q√Mω/h̄;
h̄ωε andh̄ωα1 are the energies of the modesε andα1; kε andkα1 are dimensionless coupling
constants related to the Huang–Rhys factorS in the form 2Sε = k2

ε ; 2Sα1 = k2
α1

; S is the
Jahn–Teller energyEJT in units of the phonon energy, i.e.Sh̄ω = EJT .

We denote byHL the diagonal second-order terms for each mode, i.e.

HL = 1
2h̄ωε

(
q2

1 + q2
2

)
+ 1

2h̄ωα1q
2
3. (2a)

The Jahn–Teller Hamiltonian of the E⊗(ε + α1) system

HJT +HL +He–p

can be written as the sum of the Jahn–Teller Hamiltonian for the E⊗ε system and for the
E⊗α1 system, and can be expressed as

HJT = HJT,ε +HJT,α1 (2b)
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whereHJT,ε andHJT,α1 commute with each other [17]. Furthermore from the point of
view of the optical properties, concerning the transition from the ground state to the double
degenerate state,HJT,ε leads to the typical linear E⊗ε spectral distribution exhibiting two
peaks separated by almost 2

√
Sh̄ωε, and for very largeS, a sequence of other peaks

of decreasing amplitude, due to the resonance between the vibrational levels of the two
adiabatic surfaces (the Slonczewski resonances or cone resonances [14]). The Hamiltonian
term HJT,α1 corresponds to a two-dimensional shifted harmonic oscillator and leads to
the well known Poisson spectral distribution function. So we can regard the E⊗(ε + α1)

system also as a Jahn–Teller system ‘convoluted’ with a Poisson distribution function.
This convolution can be performed in the framework of the Lanczos technique [18] and
presents here the advantage of requiring less memory storage than the direct treatment of
the E⊗(ε+α1) system; furthermore it allows us to obtain very accurate results on properly
choosing the basis functions and the initial state in the construction of the Lanczos chain.

It is convenient to briefly summarize the general concepts [11, 12] and methodology of
the Lanczos recursion method. Let us indicate with{φi} (i = 1, 2, . . . , N ) a complete set
of basis functions, for the representation of the operatorH . Starting from a seed state|f0〉,
given by whatever chosen linear combination of the{φi}, we can generate a hierarchical
chain of orthonormal states|f0〉, |f1〉, . . . |fN 〉 by means of successive applications of the
operatorH as follows:

|F1〉 =
(
H − a0

)|f0〉 b2
1 =

〈
F1|F1

〉
a0 =

〈
f0|H |f0

〉
and, in general,

|Fn+1〉 = H |fn〉 − an|fn〉 − bn|fn−1〉 n > 1. (3)

The next pair of parametersbn+1, an+1 is given by the normalization of the state|Fn+1〉 and
by the expectation value of the Hamiltonian on it, namely,

b2
n+1 =

〈
Fn+1|Fn+1

〉
an+1 =

〈
Fn+1|H |Fn+1

〉/〈
Fn+1|Fn+1

〉
. (4)

After normalization of the state|fn+1〉 = |Fn+1〉/bn+1, the steps (3) and (4) are repeated
with n replaced byn + 1, and further functions of the hierarchy can be obtained. In the
new basis{|fn〉} the Hamiltonian operator is represented by a tridiagonal Lanczos matrix
TM , which is then diagonalized, and whose elements{an} and{bn} are explicitly known up
to the orderM (M 6 N ) of the iteration performed.

Alternatively it is possible (and convenient when a large number of recursions is needed)
to consider the continued fraction expansion of the diagonal Green function matrix element
G00(E), whose coefficients are given by{an} and{b2

n}; we have

G00(E) = 1

E − a0− b2
1/[E − a1− b2

2/(E − a2− . . .)]
(5)

(the energyE is defined with a small imaginary part+iη, and the limit η → 0+ is
understood). In the case where the continued fraction (5) is truncated at a given level, the
poles of the continued fraction give the eigenvalues of the system and their residua give the
projected density of states, which is proportional to the absorption spectrum.

The procedure illustrated so far can be applied to perform the convolution between the
two densities of states concerning the E⊗ε and E⊗α1 systems. First of all it is easy to verify
that the coefficients for the recursion for both the individual systems can be given in analytic
form, taking as basis states the direct product of electronic and vibrational functions. In
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particular for the E⊗ε system [13] we have

aεn = (n+ 1)h̄ωε n = 0, 1, . . .

b2,ε
n = nSε

(
h̄ωε

)2
n = 2, 4, . . .

b2,ε
n = (n+ 1)Sε

(
h̄ωε

)2
n = 1, 3, . . .

(6)

then

HJT,ε =
∞∑
n=0

aεn

∣∣ξn〉〈ξn∣∣+ ∞∑
n=0

bεn
(∣∣ξn〉〈ξn−1

∣∣+ ∣∣ξn−1
〉〈
ξn
∣∣) (7)

where|ξn〉 are the normalized functions of the recursion hierarchy for the E⊗ε system. For
the E⊗α1 system it is easily found that

aα1
n = (n+ 1

2

)
h̄ωα1

b2,α1
n = n

2
k2
α1

(
h̄ωα1

)2 (8)

then

HJT,α1 =
∞∑
n=0

aα1
n

∣∣ζn〉〈ζn∣∣+ ∞∑
n=0

bα1
n

(∣∣ζn〉〈ζn−1

∣∣+ ∣∣ζn−1
〉〈
ζn
∣∣) (9)

where|ζn〉 are the normalized functions of the recursion hierarchy for the E⊗α1 system.
Due to the commutating properties of the operatorsHJT,ε andHJT,α1, the energies and

the intensities of the convoluted systems are

Wp,i = Ep + ei
Ip,i ∝ I εp × Iα1

i

whereEp are the eigenvalues of the tridiagonal matrix (7) for the E⊗ε system,ei are the
eigenvalues of the shifted harmonic oscillator, that isei = (i−Sα1)h̄ωα1, and varyingp and
i all the eigenvalues ofHJT are obtained;I εp indicates the intensity of the absorption
A → E for the Jahn–Teller system E⊗ε, and Iα1

i has the well known Poisson shape
(Iαii = (Sα1)

ie−Sα1/i!). Then we expect that the breathing mode acts to smooth the
absorption spectrum of the E⊗ε Jahn–Teller system, and also to quench the cone resonances
arising from a very strong Jahn–Teller coupling.

It is important to notice that the energiesEp and the intensitiesI εp are easily obtained
with high accuracy (the coefficients of the recursion are in analytic form) by diagonalizing
the tridiagonal matrix or evaluating the poles of the corresponding continued fraction for a
suitable number of steps.

3. Results for P+4 , As+4 and Sb+4

These calculations have been exemplified for the tetrameric cations P+
4 , As+4 and Sb+4 ,

which can be pictured as strongly coupled E⊗ε Jahn–Teller systems and for which high
resolution photoelectron spectra are available in the literature [15]. The energies of the
phonon modes and the coupling constant are taken from the measurements of Wanget al
[15]. The coupling constant for theα1 mode is estimated from the profile of the (2a1)

−1

bands of the photoelectron spectra shown in figures 1–3 of [15]. All the experimental data
used in the calculations are summarized in table 1. Notice that, for these systems, the Jahn–
Teller energy is very large; then the number of phonons to be taken into account is very
large too, and so is the number of functions needed to give a satisfactory description of the
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Figure 1. Eigenvalues, in units of ¯hωε , and peak intensities, in arbitrary units, for the cation
P+4 with the parameters given in table 1: (a) vibronic system E⊗ε; chain lengthn = 450; (b)
vibronic system E⊗(ε + α1).

physical system. For instance, with a number of phonons for each phonon partner of the
order of 1000, the number of basis functions (direct product of electronic and vibrational
functions) is of the order of 106, and any direct diagonalization is precluded. So the
Lanczos technique, and in particular the possibility of having analytic coefficients of the
recursion without numerical instabilities, is a very precious tool to calculate the energies
and the intensities of these systems. In figures 1–3 we present the absorption peak intensity
obtained for the vibronic E⊗ε and E⊗(ε + α1) Jahn–Teller systems and for the different
cations, with the data given in table 1; the continuous line represents the broadening with
a Lorentzian function of linewidthγ = 0.4. The quenching operated by theα1 mode on
the cone absorption spectra is evident. The ratio of the intensity of the two peaks and their
separation are in good agreement with the experimental results.

We consider now the off-diagonal second-order terms in the E⊗ε Jahn–Teller system;
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Figure 2. Eigenvalues, in units of ¯hωε , and peak intensities, in arbitrary units, for the cation
As+4 with the parameters given in table 1: (a) vibronic system E⊗ε; chain lengthn = 1000; (b)
vibronic system E⊗(ε + α1).

Table 1. Energies of the phonon modesε andα1 in cm−1 and the corresponding dimensionless
coupling constants for the different cations as from [15].

P+4 As+4 Sb+4

h̄ωε 363 210 140
h̄ωα1 606 344 241
kε 5.75 9.7 12.5
kα1 1.5 1.9 2.0

the Hamiltonian for the electron–phonon coupling has the form [7]

He–p = h̄ωε
∣∣∣∣−kεq1+ 1

2g(q
2
1 − q2

2) kεq2+ gq1q2

kεq2+ gq1q2 kεq1− 1
2g(q

2
1 − q2

2)

∣∣∣∣ (10)

whereg is the dimensionless second-order coupling constant.
The calculations are made in a second quantization scheme and using again the Lanczos
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Figure 3. Eigenvalues, in units of ¯hωε , and peak intensities, in arbitrary units, for the cation
Sb+4 with the parameters given in table 1: (a) vibronic system E⊗ε; chain lengthn = 1500; (b)
vibronic system E⊗(ε + α1).

technique, but in this case the coefficients of the recursion are no longer in analytic form.
In the calculations we used at most 800 phonons for each phonon partner, and 2000 steps of
the Lanczos chain. As usual in the Lanczos technique, at large numbers of iterations there
are instabilities in the calculations of the recursion parameters due to the finite precision
arithmetic of the computers, and spurious states can appear. Nevertheless we expect to obtain
reasonably good spectral information [19], since the essential information is contained in the
initial parameters of the chain. Even if the eigenvalues are not so precise as in the previous
linear coupling case, their inaccuracy remains within a few per thousand. In effect we
checked the convergence of the algorithm by means of the convergence parameterW(Ei),
defined [20] as the projection modulus squared of each eigenvector on the last state of the
Lanczos chain. In our calculations and in the energy range of interest,W(Ei) is, at most, of
the order of 10−4, and this means that we expect eigenvalues with at least three significant
digits, enough to compare the calculations with the experimental results. Furthermore we
have verified that the relative energy difference [E(N) − E(N − 1)]/E(N), in the energy



10354 G Bevilacqua et al

Figure 4. Jahn–Teller system E⊗ε with second-order effects. Eigenvalues, in units of ¯hωε ,
and peak intensities, in arbitrary units, of the tetrameric cations (a) P+

4 , (b) As+4 and (c) Sb+4 .
The parameters are those given in table 1; the second-order dimensionless coupling constant is
g = 0.3. The continuous line represents the broadening with a Lorenzian function of linewidth
γ = 0.4.

range of interest, is of the order of 10−3 with N = 800 for Sb+4 , less for the other cations
considered.

The quadratic coupling constantg spans the interval 0< g < 1 (in this range we have
no instabilities, as can be deduced looking at the lower adiabatic potential energy sheet
[15]). In figure 4 we show the absorption spectra obtained for each tetrameric cation and
with a second-order coupling constantg = 0.3, larger than usually considered [15, 16]. By
inspection with figures 1(a), 2(a) and 3(a), it can be inferred that the bandshape is determined
mostly by the linear Jahn–Teller interaction and that the second-order effect influences only
marginally the cone resonances in these systems.

4. Conclusions

We have studied the vibronic model E⊗(ε + α1), with a very large linear interaction to
the modeε, applying the Lanczos recursion method to the E⊗ε system convoluted with a
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Poisson function. Properly choosing the initial state, the coefficients of the recursion have
been put in analytic form and the absorption spectrum has been calculated in a very reliable
way. The calculations have been exemplified for the tetrameric cations P+

4 , As+4 and Sb+4
and we have found a good agreement with the experimental results. Consideringseparately
the effect of the off-diagonal second-order terms also, we have verified the role of the
coupling to the totally symmetric mode for the quenching of the Slonczewski resonances in
the strongly coupled E⊗ε Jahn–Teller systems.
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[2] Öpyk U and Pryce M H L 1957Proc. R. Soc.A 238 425
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